27 research outputs found

    Initiation à une expérience de diffusion d'électrons : la diffusion Compton virtuelle

    Get PDF
    Stage Janus 05 A1-Collaboration, Institut für Kernphysik, Universität Mainz, D-55099 Mainz, German

    How to estimate total differential attenuation due to hydrometeors with ground-based multi-frequency radars?

    Get PDF
    Abstract. At millimeter wavelengths, attenuation by hydrometeors, such as liquid droplets or large snowflakes, is generally not negligible. When using multi-frequency ground-based radar measurements, it is common practice to use the Rayleigh targets at cloud top as a reference in order to derive attenuation-corrected reflectivities and meaningful dual-frequency ratios (DFR). By capitalizing on this idea, this study describes a new quality-controlled approach aiming at identifying regions of the cloud where particle growth is negligible. The core of the method is the identification of a Rayleigh plateau, i.e. a large enough region near cloud top where the vertical gradient of DFR remains small. By analyzing collocated Ka-W band radar and microwave radiometer (MWR) observations taken at two European sites under various meteorological conditions, it is shown how the resulting estimates of differential path-integrated attenuation (DeltaPIA) can be used to characterize hydrometeor properties. When the DeltaPIA is predominantly produced by cloud liquid droplets, this technique alone can provide accurate estimates of the liquid water path. When combined with MWR observations, this methodology paves the way towards profiling the cloud liquid water and/or quality flagging the MWR retrieval for rain/drizzle contamination and/or estimating the snow differential attenuation

    Highly supercooled riming and unusual triple-frequency radar signatures over Antarctica

    Get PDF
    Riming of ice crystals by supercooled water droplets is an efficient ice growth process, but its basic properties are still poorly known. While it has been shown to contribute significantly to surface precipitation at mid-latitudes, little is known about its occurrence at high latitudes. In Antarctica, two competing effects can influence the occurrence of riming: the scarcity of supercooled liquid water clouds due to the extremely low tropospheric temperatures and the low aerosol concentration, which may lead to the formation of fewer and larger supercooled drops potentially resulting in an enhanced riming efficiency. In this work, by exploiting the deployment of an unprecedented number of multi-wavelength active and passive remote sensing systems (including triple-frequency radar measurements) in West Antarctica, during the Atmospheric Radiation Measurements West Antarctic Radiation Experiment (AWARE) field campaign, we evaluate the importance of riming incidence in Antarctica and find that riming occurs at much lower temperatures compared to the mid-latitudes. We then focus on a case study featuring a persistent layer of unexpectedly pronounced triple-frequency radar signatures but only a relatively modest amount of supercooled liquid water. In-depth analysis of the radar observations suggests that such signatures can only be explained by the combined effects of moderately rimed aggregates or similarly shaped florid polycrystals and a narrow particle size distribution (PSD). Simulations of this case study performed with a 1D bin model %by introducing an additional class corresponding to rimed ice indicate that similar triple frequency radar observations can be reproduced when narrow PSDs are simulated. Such narrow PSDs can in turn be explained by two key factors: (i) the presence of a shallow homogeneous droplet or humidified aerosol freezing layer aloft seeding an underlying supercooled liquid layer, and (ii) the absence of turbulent mixing throughout a stable polar atmosphere that sustains narrow PSDs, as hydrometeors grow from the nucleation region aloft to several millimeter ice particles, by vapor deposition and then riming

    Precipitation measurement with high resolution non-coherent X-band radar and vertically pointing K-band radar. Application to the study of the variability of precipitation in the framework of COPS field campaign

    No full text
    L’estimation quantitative des précipitations à l’échelle locale est une nécessité sociétale, à cause de l’augmentation des dégâts provoqués par des inondations exacerbées par l’urbanisation croissante. Or, des estimations locales sont particulièrement difficiles à réaliser à cause de la forte variabilité des précipitations. De plus, ce genre d’estimation est sollicité par de petits organismes tels qu’une commune, pour lesquels il n’est pas envisageable d’utiliser des instruments à la pointe de la recherche technologique à cause de leur coût prohibitif. Ainsi, il est nécessaire de développer des méthodes d’estimation quantitative des précipitations applicables à un dispositif expérimental de prix abordable. Dans ce but, un dispositif expérimental innovant est utilisé dans cette thèse. Il est constitué d’instruments de mesure directe, au sol, tels que des pluviomètres et des disdromètres, et d’un prototype de radar à balayage horizontal basé sur un radar nautique commercial, associé à un MRR (Micro Rain Radar) à visée verticale qui fournissent une estimation en altitude de la pluie, respectivement sur une surface donnée et le long d’un profil vertical. Le radar à balayage horizontal est un radar en bande X, c’est-à-dire qu’il fonctionne à une longueur d’onde lui procurant une très haute résolution radiale, mais qui est très atténuée par les précipitations. Le MRR permet d’obtenir une description précise de la microphysique des précipitations et sert de relais entre les mesures au sol et les mesures en altitude du radar en bande X. Ces deux radars étant novateurs, une grande partie de cette thèse consiste à valider leurs mesures : étalonnage, filtrage d’échos aberrants, correction de l’atténuation, etc. Une fois les mesures rendues exploitables, cette thèse se focalise sur l’étude de la variabilité des précipitations afin de proposer et développer différentes méthodes de classification, selon leur type ou leur variations locales, et de vérifier leur potentiel pour l’amélioration de l’estimation des précipitations. Les résultats montrent que cet objectif ne peut être atteint que si la qualité des mesures des radars est encore améliorée : moins d’échos parasites pour le radar en bande X et prise en compte du vent vertical pour le MRR.Due to the increase of damage associated with floods enhanced by expanding urbanisation, the quantitative estimation of precipitation on a local scale is a societal need. However, such estimations are difficult because of the high variability of precipitation. Moreover, these estimations are requested by small organisations such as local authorities which cannot afford top level research instruments. Hence, new methods of estimation applicable to a cheap experimental set are needed. Toward this goal, an innovative experimental set is used in this work. It consists of ground instruments such as raingauges and disdrometers, and two radars, a prototype of a scanning radar based on a modified marine radar and a vertically pointing MRR (Micro Rain Radar), which give estimation of rain aloft, over an area and along a profile, respectively. The scanning radar works at X-band, meaning that it uses a longwave very attenuated by precipitation, but which provides a high range resolution. The MRR yields a detailed description of microphysics of precipitation and fills the gap between ground measurements and X-band radar measurements aloft. As both these radars are innovative, a large part of this PhD thesis was spent on the measurements validation : radar calibration, abnormal echoes filtering, attenuation consideration, etc. Using these corrected measurements, this PhD focus then on the study of the variability of precipitation, and aims to propose and develop several classification methods based on precipitation type or local variability, and to check their potential for the improvement of precipitation estimation. Results show that this goal can be reached only if the radar measurements quality is further improved : less interference echoes for the X-band radar, and consideration of vertical wind for the MRR

    Mesure des précipitations à l'aide d'un radar en bande X non-cohérent à haute résolution et d'un radar en bande K à visée verticale. Application à l'étude de la variabilité des précipitations lors de la campagne COPS

    Get PDF
    Due to the increase of damage associated with floods enhanced by expanding urbanisation, the quantitative estimation of precipitation on a local scale is a societal need. However, such estimations are difficult because of the high variability of precipitation. Moreover, these estimations are requested by small organisations such as local authorities which cannot afford top level research instruments. Hence, new methods of estimation applicable to a cheap experimental set are needed. Toward this goal, an innovative experimental set is used in this work. It consists of ground instruments such as raingauges and disdrometers, and two radars, a prototype of a scanning radar based on a modified marine radar and a vertically pointing MRR (Micro Rain Radar), which give estimation of rain aloft, over an area and along a profile, respectively. The scanning radar works at X-band, meaning that it uses a longwave very attenuated by precipitation, but which provides a high range resolution. The MRR yields a detailed description of microphysics of precipitation and fills the gap between ground measurements and X-band radar measurements aloft. As both these radars are innovative, a large part of this PhD thesis was spent on the measurements validation : radar calibration, abnormal echoes filtering, attenuation consideration, etc. Using these corrected measurements, this PhD focus then on the study of the variability of precipitation, and aims to propose and develop several classification methods based on precipitation type or local variability, and to check their potential for the improvement of precipitation estimation. Results show that this goal can be reached only if the radar measurements quality is further improved : less interference echoes for the X-band radar, and consideration of vertical wind for the MRR.L’estimation quantitative des précipitations à l’échelle locale est une nécessité sociétale, à cause de l’augmentation des dégâts provoqués par des inondations exacerbées par l’urbanisation croissante. Or, des estimations locales sont particulièrement difficiles à réaliser à cause de la forte variabilité des précipitations. De plus, ce genre d’estimation est sollicité par de petits organismes tels qu’une commune, pour lesquels il n’est pas envisageable d’utiliser des instruments à la pointe de la recherche technologique à cause de leur coût prohibitif. Ainsi, il est nécessaire de développer des méthodes d’estimation quantitative des précipitations applicables à un dispositif expérimental de prix abordable. Dans ce but, un dispositif expérimental innovant est utilisé dans cette thèse. Il est constitué d’instruments de mesure directe, au sol, tels que des pluviomètres et des disdromètres, et d’un prototype de radar à balayage horizontal basé sur un radar nautique commercial, associé à un MRR (Micro Rain Radar) à visée verticale qui fournissent une estimation en altitude de la pluie, respectivement sur une surface donnée et le long d’un profil vertical. Le radar à balayage horizontal est un radar en bande X, c’est-à-dire qu’il fonctionne à une longueur d’onde lui procurant une très haute résolution radiale, mais qui est très atténuée par les précipitations. Le MRR permet d’obtenir une description précise de la microphysique des précipitations et sert de relais entre les mesures au sol et les mesures en altitude du radar en bande X. Ces deux radars étant novateurs, une grande partie de cette thèse consiste à valider leurs mesures : étalonnage, filtrage d’échos aberrants, correction de l’atténuation, etc. Une fois les mesures rendues exploitables, cette thèse se focalise sur l’étude de la variabilité des précipitations afin de proposer et développer différentes méthodes de classification, selon leur type ou leur variations locales, et de vérifier leur potentiel pour l’amélioration de l’estimation des précipitations. Les résultats montrent que cet objectif ne peut être atteint que si la qualité des mesures des radars est encore améliorée : moins d’échos parasites pour le radar en bande X et prise en compte du vent vertical pour le MRR

    Initiation à une expérience de diffusion d'électrons : la diffusion Compton virtuelle

    No full text
    Stage Janus 05 A1-Collaboration, Institut für Kernphysik, Universität Mainz, D-55099 Mainz, German

    Mesure des précipitations à l'aide d'un radar en bande X non-cohérent à haute résolution et d'un radar en bande K à visée verticale. Application à l'étude de la variabilité des précipitations lors de la campagne COPS

    No full text
    L estimation quantitative des précipitations à l échelle locale est une nécessité sociétale, à cause de l augmentation des dégâts provoqués par des inondations exacerbées par l urbanisation croissante. Or, des estimations locales sont particulièrement difficiles à réaliser à cause de la forte variabilité des précipitations. De plus, ce genre d estimation est sollicité par de petits organismes tels qu une commune, pour lesquels il n est pas envisageable d utiliser des instruments à la pointe de la recherche technologique à cause de leur coût prohibitif. Ainsi, il est nécessaire de développer des méthodes d estimation quantitative des précipitations applicables à un dispositif expérimental de prix abordable. Dans ce but, un dispositif expérimental innovant est utilisé dans cette thèse. Il est constitué d instruments de mesure directe, au sol, tels que des pluviomètres et des disdromètres, et d un prototype de radar à balayage horizontal basé sur un radar nautique commercial, associé à un MRR (Micro Rain Radar) à visée verticale qui fournissent une estimation en altitude de la pluie, respectivement sur une surface donnée et le long d un profil vertical. Le radar à balayage horizontal est un radar en bande X, c est-à-dire qu il fonctionne à une longueur d onde lui procurant une très haute résolution radiale, mais qui est très atténuée par les précipitations. Le MRR permet d obtenir une description précise de la microphysique des précipitations et sert de relais entre les mesures au sol et les mesures en altitude du radar en bande X. Ces deux radars étant novateurs, une grande partie de cette thèse consiste à valider leurs mesures : étalonnage, filtrage d échos aberrants, correction de l atténuation, etc. Une fois les mesures rendues exploitables, cette thèse se focalise sur l étude de la variabilité des précipitations afin de proposer et développer différentes méthodes de classification, selon leur type ou leur variations locales, et de vérifier leur potentiel pour l amélioration de l estimation des précipitations. Les résultats montrent que cet objectif ne peut être atteint que si la qualité des mesures des radars est encore améliorée : moins d échos parasites pour le radar en bande X et prise en compte du vent vertical pour le MRR.Due to the increase of damage associated with floods enhanced by expanding urbanisation, the quantitative estimation of precipitation on a local scale is a societal need. However, such estimations are difficult because of the high variability of precipitation. Moreover, these estimations are requested by small organisations such as local authorities which cannot afford top level research instruments. Hence, new methods of estimation applicable to a cheap experimental set are needed. Toward this goal, an innovative experimental set is used in this work. It consists of ground instruments such as raingauges and disdrometers, and two radars, a prototype of a scanning radar based on a modified marine radar and a vertically pointing MRR (Micro Rain Radar), which give estimation of rain aloft, over an area and along a profile, respectively. The scanning radar works at X-band, meaning that it uses a longwave very attenuated by precipitation, but which provides a high range resolution. The MRR yields a detailed description of microphysics of precipitation and fills the gap between ground measurements and X-band radar measurements aloft. As both these radars are innovative, a large part of this PhD thesis was spent on the measurements validation : radar calibration, abnormal echoes filtering, attenuation consideration, etc. Using these corrected measurements, this PhD focus then on the study of the variability of precipitation, and aims to propose and develop several classification methods based on precipitation type or local variability, and to check their potential for the improvement of precipitation estimation. Results show that this goal can be reached only if the radar measurements quality is further improved : less interference echoes for the X-band radar, and consideration of vertical wind for the MRR.CLERMONT FD-Bib.électronique (631139902) / SudocSudocFranceF

    MRR read data

    No full text
    Plot MRR data (Octave)</p

    Parsivel

    No full text
    Octave software code for Parsivel data: .mis to .mat</p

    Parsivel plot data

    No full text
    Plot the cumul and DSD (Octave software)</p
    corecore